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A common cause of spurious (non-physical) modes that arise in either finite difference or 
finite element derived eigenvalue problems is identified. It is shown that these modes arc the 
result of an excessively flexible system. The flexibility is removed by constraining the probiem. 
An analogy is drawn between electromagnetic wave propagation and acoustic wave 
propagation in liquids to show that the spurious modes encountered in both cases are due to 
fundamentally the same cause. Results are presented to show that constraining the problem 
yields a significant reduction in the number of spurious modes, a big improvement in the 
quality of the eigenvector of the physical modes and on!y a marginal increase in the error in 
the eigenvalue for the low order modes. 

I. INTRODUCTION 

The finite element method [l] has enjoyed popularity in the last few years due to 
its success in solving field problems. However, one serious disadvantage of the 
method is the appearance of spurious modes in eigenvalue problems. A few authors 
[2-61 have referred to them but no satisfactory explanation has yet been offered for 
their existence, nor has a method yet been devised for their elimination. Konrad /2j 
suggests that spurious modes are caused by not forcing boundary conditions 
rigorously, but when tested computationally by Davies, Fernandez and Philippou [ 3 ! 
no significant reduction in the number of spurious modes occurred. In this paper 
another explanation for these spurious modes is offered and the results are 
considerably more successful. 

II. THEORY 

Commonly used variational expressions for use in acoustics and electromagnetic 
problems are 

f, Q)2=- (Av)~ c(Av) dl2 - !^, vT . [cAv] . di 
“fa v’pv AQ 
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,z=~a(VXH)*II~-‘l~(VXH)d~ 
ja H*,uH dQ (2) 

respectively. The first is defined and developed in Section III. The second occurs in 
various references [2, 3, 181. Other formulations can be used but there are good 
reasons for choosing (1) or (2) over alternatives. The contention of this paper is that 
on occasions, and in particular when using the above expressions, there is a lack of 
uniqueness in the vector field (v or H) of the corresponding Euler equations and so 
when used to formulate the finite element method, this can inevitably lead to an ill- 
conditioned system with resulting spurious modes. 

A. An Analogy Between Electromagnetic Wave Propagatioil and Acoustic Wave 
Propagation in Liquids 

Consider Maxwell’s equations in a source free and uniform isotropic medium: 

V x E = -aBlat (34 

Vx H=aD/at (3b) 

sV.E=O 

yV.H=O 

(44 

(4b) 

where each symbol has its usual meaning. Equation (3b) can also be written as 

V x {H $ V# } = SD/at (5) 

for all scalar fields 4. This is an example of Helmholtz’s theorem, that a vector field 
is only fully defined when both the divergence and the curl of the vector field are 
defined at every point in space. Hence a value must be assigned to V . H and (4b) 
states that this value is zero. Similarly, (4a) removes ambiguity in the vector E 
defined in (3a). 

Next, consider the equation for wave propagation in compressible liquids. From 
Auld [7] the governing equation is 

where c,, is the Lame constant of the liquid, p is its density and v is the velocity 
vector. Equation (6) can alternatively be written as 

(7) 
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for all vector fields w. This is another example of Helmholtz’s theorem but this time 
the ambiguity is removed by placing a value on V x v at every point in space. Since 
liquids cannot support waves in which there is rotation, it follows that V X v = 0 
everywhere. 

This analysis has shown there is a common problem of field representation for 
electromagnetic wave propagation and acoustic wave propagation in liquids. It is 
suggested that the ambiguity in the problem statement referred to above is one of the 
primary causes of spurious modes. 

B. The Finite Element Method and Constrained Optimisation 

In the finite element method [ 1 ] we seek a function u that will minimise a 
functional (usually an energy functional) J(U). The function u is obtained by patching 
together element basis functions to form the global approximation. This is a probiem 
in unconstrained optimisation. If, however, a constraint as discussed in Section X4 is 
imposed on the problem, then it becomes one of constrained optimisation, and three 
methods that are used to solve such problems are now considered. We may: 

(1) Restrict the trial (basis) functions to lie in the admissible set of functions 
that actually satisfy the constraint. 

(2) Modify the functional by the Lagrange multiplier method. The solution is 
now sought over all admissible functions. 

(3) Modify the functional by adding a penalty term. As in (2) above, the 
solution is now sought over all admissible functions but by increasing the penalty 
parameter a, the solution is forced to lie in an increasingly constrained set of 
admissible functions. 

In method (l), the constraint is imposed a priori on the trial functions and no 
modification need be made to be functional. We have not used this method because it 
requires the construction of special basis functions and elements. 

In method (2), a modified functional J* is constructed 

J*(x,p)=J(x)+ I_ iug(x)dQ 
-0 

(8) 

where x denotes the set of element “nodal values,” and the required constraini 
g(s) = 0 is imposed in the volume Q by the Lagrange multiplier ,u. This method 
suffers from disadvantages, perhaps the chief one being that the system stiffness 
matrix now possesses zeros along the main diagonal. This can lead to computational 
difficulties because the matrix is now ill-conditioned. The technique was used with 
only partial success by Mabaya, Lagasse and Vandenbulcke [S] in the finite element 
analysis of optical waveguides. They found that specific enforcement of the natural 
boundary condition by the Lagrange multiplier method reduced the number of 
spurious modes, but did not eliminate them. 
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In method (3), the penalty function approach, the functional is augmented 

(9) 

where the constraint g(x) = 0 is imposed in the volume fl in the limit as the positive 
penalty parameter a + co. 

Several points can be made about the penalty formulation: 

(1) Imposing the constraint in this manner is exactly the same as the standard 
variational procedure [9] of removing a boundary condition restriction on the trial 
function by adding a suitable integral to the functional, except that the added term is 
here positive semi-definite. In each case, the resulting Euler equations include the 
required constraint or boundary condition. 

(2) The constraint is imposed in the least-squared sense. 

(3) As will be shown in Section III, physical significance can be attached to (r. 

(4) The larger the value of (Y, the more heavily is the constraint imposed on the 
trial function. 

In this paper the penalty function method will be used. To appreciate the power of 
the technique a brief digression to survey some of the applications of the method is 
justified. The penalty function method has its origins in operational research and was 
later adopted by scientists and engineers engaged on finite element analysis when a 
variational principle has to be supplemented by a constraint. For example 
Zienkiewicz [lo] considers the problem of beam bending using Co trial functions, the 
required C’ continuity being imposed by the penalty function method. Bercovier and 
Engelman [ 111 and Hughes, Liu and Brooks [ 121 both address the problem of 
viscous incompressible flow where the incompressibility is forced by the penalty 
function. Hamdi and Ousset [ 131 apply a penalty function to a coupled fluid- 
structure system. 

In each of these examples the authors report success provided reduced integration 
is used. Reasons for the success of this technique are suggested by Zienkiewicz and 
Hinton [ 141. They concentrate on equations of the form Ax = b and show that in 
some situations reduced integration is vital to obtain correct answers. In this paper a 
time harmonic propagation problem is considered and it will be shown that reduced 
integration, although advantageous, is not vital. 

Since the constraint is imposed in the limit as u -+ co, one might expect problems 
of numerical ill-conditioning. In practice, this problem did not occur, acceptable 
solutions being obtained well before ill-conditioning arose. 

When the penalty term is incorporated into the system equations the eigenvalue 
problem can be written as 

(K + aK,) x = AMx (10) 

where K is the system stiffness matrix due to the unconstrained functional, K, is the 
contribution to the system stiffness matrix from the penalty function, A= w2 is the 
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eigenvalue, w is the resonant frequency in radians/second and M is the system mass 
matrix. Clearly, as a + 00, (10) approaches 

aK,x =kMx (1 1) 

and as u increases, II increases. To limit this error increase in the eigenvalue a 
technique known as reduced integration [ 151 is used. 

C. Reduced Integration 

It is known that the resonant frequencies computed numerically in the finite 
element method are upper bound approximations on the exact resonant frequencies of 
the system. This means that the system is too stiff. It is found Il.51 that by evaluating 
the element stiffness matrices with a reduced order of integration improved answers 
can be obtained, provided that the error in the numerical scheme systematically 
compensates for the upper bound approximation on the stiffness calcuiated by the 
finite element method. If, however, too low an integration scheme is used, then 
unsatisfactory results are obtained. 

III, EXAMPLE 

In this section an example of the penalty formulation applied to a. finite element 
eigenvalue problem is considered. The problem chosen is that of finding the 
resonances of a contained cylinder of water subject to the boundary condition that 
the normal component of the velocity vanishes over the surface S of the cylinder. One 
method of avoiding spurious modes would be to define the problem in terms of a 
scalar potential. We have avoided this approach because the work described in this 
paper is the first stage in the development of a computer program to model the 
propagation of elastic waves in an acoustic microscope [ 161. This involves waves 
propagating through a liquid-solid interface, and so the particle velocity is a 
convenient choice of field variable throughout the volume. Thus we require the 
solution of 

CIIVIV * v] =p(iY’v/2t2) 

subject to the boundary condition 

v-ii=0 

where n is the unit normal vector, and to the constraint 

j6a! 

(6b‘I vxv=o 

everywhere in the cylinder. 
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It is assumed that the problem is axisymmetric, that is, there is no velocity 
component ue and the fields have no 8 angular dependence. Under these conditions 
and assuming harmonic time dependence, (6) may be easily solved for IJ, and 0,; 

v, = AW,(kr) cos p.2 (12) 

21; = @J,(kr) sin /3z (13) 

where A is an arbitrary constant, p is the phase constant, J, and 1, are the usual 
Bessel functions and 

(o/V~)* = kZ + /?’ VW 

6 = (Cl I/P>“‘. (14b) 

Imposing the boundary condition v e ri = 0 on (12) and (13) shows that 

and 

ka =p,,, (15) 

p = rl?+ (16) 

where I and u are the length and radius of the cylinder, respectively, and p, are the 
roots of J,(p) = 0, i.e., p. = 0, p1 = 3.832, p2 = 7.016, etc. In the example considered 
I = 0.40 metres and a = 0.15 metres. Table I shows the first eight analytically 
calculated modes. The nomenclature used is T,,, where m and n are defined by (1.5) 
and (16), respectively. From the table it is seen that there are five scalar modes (i.e., 
modes in which one of the two components is identically zero) and three vector 
modes. 

TABLE I 

The First Eight Analytically Calculated Modes 
for a Contained Cylinder of Water 

P k w 

7.8540 0 12174. 

15.?080 0 24341. 

23.5619 0 36251. 

0 25.5447 39594. 

7.8540 25.5441 41423. 

15.7080 25.5447 46481. 

31.4159 0 48695. 

23.5619 25.5447 53866. 

Note. p and k are in rad/m, and UI is in rad/s, assuming a 
velocity of sound of 1550 m/s. 
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Auld [8] shows that 

mz = j, (Av)~ C(h) dfi - Is Vr . [CAV] I di 
jn v’pv”d.0 

is the starting point for deriving a number of different functionals. By considering a 
small perturbation about the exact solution it can be shown that (17) is indeed a 
functional corresponding to the Euler equation (6) provided cJa = 0 and the boundary 
condition v - li = 0 is forced on the trial function. In (17), A is the matrix relating 
strain and displacement, c is the stiffness matrix and 5’ is the surface of the volume 
Q. If we modify the functional (17) to include the penalty V x v = 0, the new 
functional is 

Lo2 = .fQ (Av)’ C(AV) d-2 - J‘s VT ~[cAv]~di+aj’,[Vxv]‘[Vxv]dQ 
jn vrpv dQ 

(18) 

It is easily shown that the Euler equation for (18) indeed includes V X v = I%the 
penalty that is being imposed. The penalty term is suppressing any rotational energy 
that could appear in the unconstrained functional (17). CY has units of N/m and 
represents the shear modulus of the liquid, which should be zero. We therefore have a 
conflict between the “physics of the problem,” which states that EL + 0 and the 
“mathematics of the problem,” which states that cx + co. Assuming that there exist 
both compression and shear wave components in the solution obtained with the 
unconstrained functional (17) ( i.e., neither V x v nor V . v are identically zero): then 
for the same boundary conditions and forcing function, an increasingly large shear 
modulus (CX * co) implies an ever smaller amplitude of any shear waves present. Thus 
the eigenvectors become more and more heavily weighted towards compression 
velocity modes only. Alternatively, any shear waves present can be eliminated by 
allowing the shear modulus to approach zero. Thus there is no discrepancy between 
the physical and mathematical arguments. They are just alternative ways of 
considering the same phenomenon. 

IV. RESULTS 

A computer program was written to solve the problem using finite elements. The 
mesh used is shown in Fig. 1 and consists of 24 triangular elements and 63 nodes 
with two degrees of freedom (ur and vi) at each node. As is evident, quadratic basis 
functions are used. Double precision arithmetic (64 bits) was used in the program. 

A. Imposing a Curl Free Constraint 

Figures 2 and 3 show how the T,, and T,, modes, respectively, move down the 
spectrum of eigenvalues as the penalty parameter increases. The T,, and T,? modes 
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0 00 

FIG. 1. A longitudinal section through the r-z plane showing the mesh used. 

lock into positions 5 and 6 in the spectrum, respectively. This is correct. as can be 
seen from Table I. The results presented in these two figures are obtained for both full 
(error = O(h4)) and reduced (error = O(h3)) integration of the penalty term. Figures 4 
and 5 show the variation in the error in the frequency for these two modes as the 
penalty parameter increases. The results for both full and reduced integration are 
plotted on each figure and it can be seen that the use of reduced integration results in 
a smaller increase in error in the frequency. This is expected from the above theory. 

t 
EliEN'IILUE NUIIBEP 

30 

II : : I ! . 

6 0 10 n 

LOGlO FWWTY FARAP,ETER 

FIG. 2. A graph showing how the T,, mode moves down the spectrum of eigenvalues as the penalty 
parameter increases. 
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FIG. 3. A graph showing how the r,? mode moves down the spectrum of eigenvalues as the penah! 
parameter increases. 

Table II shows how the spectrum of eigenvalues, for the first eight physical modes 
only, varies as the penalty parameter increases. From the table it is seen that as the 
penalty parameter increases, an increasing number of spurious modes are eliminated 
and the physical modes gradually move to the bottom of the spectrum. When 
a = 6 X lo9 N/m, there are no spurious modes in the first eight eigenvalues. Wowever, 

’ I 

FIG. 4. The variation of the error in the resonant frequency for the mode T,, with penah! 
parameter. The results for both full and reduced integration are plotted. 
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FIG. 5. The variation of the error in the resonant frequency for the mode Tlz with penalty 
parameter. The results for both full and reduced integration are plotted. 

TABLE 

The Variation of the Spectrum of 

Eigenvalue number I 2 3 4 5 6 7 8 9 10 II I2 I3 I4 15 16 17 

Penalty 
parameter 

0 s s s s s s s s s s s s s s s s s, 
lo8 s s 01 s s s s s s s s 02 s s s s s 

2 x 106 s 01 s s s s s 02 s s s s s s 03 s $ 
4x 10s 01 s s s 02 s s s s s 03 10 11 s 12 s S 
6x10s 01 s s 02 s s s 03 s 10 11 s s 12 04 s ‘I3 
8X108 01 s 02 s s 03 s 10 11 s s 12 s 04 s 13 

lo9 01 02 s s s 03 10 11 s 12 s 04 s s 13 
2x lo9 01 02 03 s 10 II s I2 04 s I3 
4 x IO9 01 02 03 10 11 12 04 s 13 
6x lo9 01 02 03 10 11 12 04 13 

Note. The first and second digits for each physical mode are the values of m and n, respectively, in the nomen- 
clature I-,,, . S denotes a spurious mode. 
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there are spurious modes higher up the spectrum but t.heir elimination is not possible 
because with the value of a used they have not yet been sufficiently constrained. 

Figures 6a and 6b show the other major advantage to be gained by constraining 
the functional. They show for the r,, mode the same physical field with no constraint 
(a = O), Fig. 6a, and with a value of a of 6 x 10’ using reduced integration of the 
penalty, Fig. 6b. Only the non-zero component (L!,) is shown. The improvement in the 
quality of the eigenvector is evident. Whilst it is possible to discard, incorrectly in 
this case, the eigenvector in Fig. 6a as spurious, the same cannot be said for the 
eigenvector in Fig. 6b, although they both represent the same physical field (a scalar 
field). Furthermore, the approximation to zero for the other component, ~7,. is 
substantially better with the penalty function than without it. 

It was pointed out in Section IIC that if too low an integration order is used when 
evaluating the penalty poor results may arise. This was confirmed numerically by 
integrating the penalty function using a scheme whose error is 0(/z’). Many spurious 
modes were obtained, even when a high penalty parameter value was used, The 
reason for this is that many terms in each element matrix derived from the penalty 
function are zero and so the constraint is only approximately imposed on the 
functional (17 j. 

Silvester [ 17 ] points out that significantly improved results are obtained when high 
order basis functions are ‘used. This is all the more true when a penalty is imposed 
because 

(1 j first order basis functions rule out reduced integration if the penalty term 
involves their derivatives and 

(2) the higher the order of the basis function, the lower the increase in the 
error in the resonant frequency and so the more accurate the result. 

II 

Eigmvectors zs the Penalty Parameter Increases 

- 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 

s s s s s s 01 s 02 s s s s s s 03 s 10 11 s 12 04 s 13 
s s s 03 s s 10 11 s s s s 12 04 s s s s 13 
10 s 11 s s 12 s s 04 s 13 
s 04 s s 13 
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FIG. 6a. The mode To, obtained with no constraint aplied to the functional. Only the u, component 
is shown. 

B. Further Tests 

In Section IIA the analogy between electromagnetic wave propagation and 
acoustic wave propagation in liquids was presented and in Section IV A the results of 
the acoustic problem were presented. Rahman and Davies [ 191 have used the finite 
element method, using constrained and unconstrained functionals, to analyse optical 
waveguides. Specifically, they used the H field functional (2) and compare the results 
with and without the divergence free penalty. Their results are in agreement with 
those presented here, namely, the gradual removal of the spurious solutions from the 
bottom of the spectrum and a marked improvement in the quality of the eigenvector 
of the physical modes. 

Finally, it is interesting to note that with the unconstrained functional (17) the first 
three eigenvalues are all of the order of 10-3, but the fourth eigenvalue is of the order 
of IO5 and thereafter there is a smooth increase in the value of the eigenvalues. The 
large increase in magnitude between the third and fourth eigenvalues suggests that the 
near-zero eigenvalues are due to instability in the equations. When the curl free 
constraint is imposed, the first three eigenvalues disappear, suggesting that the 



SPURIOUS MODES IN FINITE ELEMENTS 13 

1 . 

1. 
1 . 
1. 

4. 

8 
6 
4 
2 1 
e 1 
8 1 
k 1 
4 I 

2 
0 
0 

2 AXIS 118 -’ 

.8 

.6 

.4 

.2 
‘B 
8 

6 
4 
2 

FREQUENCY= .i2t 703c 5 RADSfSEC 

FIG. 6b. The mode T,, obtained by minimising the constrained functional. Reduced integration is 
used. Only the ~1, component is shown. 

constraint confers stability on the equations. Kiefling and Feng [6] similarly report a 
cluster of near-zero frequency spurious modes and study the effect of varying the 
mesh size. 

V. CONCLUSIONS 

A study of spurious modes that arise in eigenvaiue problems has been carried out. 
It has been shown that a major cause of these spurious modes is ambiguity in the 
problem statement. Three methods were considered for removing the ambiguity but 
two were rejected for computational reasons. The third method, the penalty method 
was used and proved to be very successful. This is a limiting process in which the 
penalty is forced on the solution as the penalty parameter tends to infinity, This 
means that only among the lower order physical modes can the spurious modes be 
eliminated but this is not serious because we are normally only interested in these 
lower order modes. 
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Reduced integration was used to limit the increase in error in the frequency that 
occurs when a constrained functional is minimised. It was shown that care needs to 
be taken in choosing the correct integration order. As well as eliminating spurious 
modes, constraining the functional substantially improves the quality of the eigen- 
vector of the physical modes. 

The analogy between electromagnetic wave propagation and elastic waves in 
compressible liquids was emphasized. Both theoretical and computational evidence 
were presented to show that in their vector solution by the finite element method and 
in the occurrence or avoidance of non-physical solutions, the two wave types have 
many properties in common. 
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